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ANALYSIS OF PLANE PHASE STRAINS OF RODS AND PLATES

UDC 539.370L. I. Shkutin

The problem of a rod and a plate subjected to plane strain in the interval of the direct phase trans-
formation is formulated as a nonlinear boundary-value thermoelastic problem with an implicit de-
pendence on temperature (through a phase parameter simulating the volume fraction of new-phase
crystals). An analytical solution of the problem of a rod bent into a ring and a plate bent into a tube
as a result of phase strains under the action of a small end bending moment is given. A numerical
analysis of the buckling problem of a titanium nickelide (alloy) rod (plate) under longitudinal com-
pression in the interval of the direct phase transformation shows that buckling becomes possible if
the compressive load is much lower than the Euler critical load calculated before the transformation.
Branches of buckled equilibrium states corresponding to loads lower than the Euler load are plotted
as functions of the phase parameter. In all cases considered, the deflections increase abruptly in the
neighborhood of the critical points. The evolution of buckling modes is studied, and the phase-strain
distributions along the rod (plate) are shown.

Key words: shape-memory alloys, rods, plates, phase strains, buckling, numerical analysis.

Metal alloys undergoing phase transformations under thermal cycling are mainly used in design of thermosen-
sitive structural elements. Thin-walled elements made of these alloys exhibit a very pronounced shape-memory
effect. Unique mechanical properties of shape-memory alloys are determined by their thermoelastic phase trans-
formations. Cooling of a loaded specimen in the phase-transformation interval results in the phase strain whose
deviator is proportional to the internal-stress deviator at a constant temperature. Under subsequent heating of the
specimen in the inverse-transformation interval, the phase strain acquired earlier is removed partly or completely
(which is called the shape-memory effect). Over the last years, a certain progress has been achieved in constructing
mathematical equations modeling the phase-transformation and shape-memory effects. In the present paper, mi-
cromechanical constitutive relations proposed and justified in [1, 2] are used. In [3], these equations were applied to
some nonlinear bending problems of rods in the direct-transformation interval, including the buckling problems. It
was found [3] that, within the temperature interval of martensite transformation, intense buckling of a rod occurs
under a compressive load lower than the Euler load if a very small transverse force is applied to the rod end. The
possibility of buckling of a compressed rod and a plate is established below by a numerical analysis of branching
of the solutions of the corresponding nonlinear boundary-value problem. Moreover, an analytical solution of the
problem of a rod bent into a ring and a plate bent into a tube owing to phase strains is obtained. The solutions
of the problems considered are obtained by the kinematic model of a rod with independent rotations of its cross
sections [4].

Plane-Strain Equations of Rods and Plates. Let xJ (J = 1, 2, 3) be a Cartesian coordinate system to
which the motion of material points of the deformed rod is referred and iJ be an orthonormal basis of this system.
A local coordinate system tJ with an orthonormal basis e0

J (t3) is related to the reference line of the rod in such a
manner that t3 is the internal parameter of the line and t1 and t2 are the transverse coordinates.
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We consider a rod with a plane reference line whose undeformed configuration is determined by the parametric
equations

x = x2i2 + x3i3, x2 = x2(t3), x3 = x3(t3) ∀ t3 ∈ [0, l] (1)

[x(t3) is the position vector of an arbitrary point and l is the length of the line]. According to (1), the reference
line is located in the coordinate plane with the basis (i2, i3).

The orthonormal bases iJ and e0
J (t3) can be interrelated by the orthogonal transformation e0

J = iJ · O0

with the rotator tensor O0(t3) whose components are determined in both bases by the orthogonal matrix

O0
JK =

⎡
⎣

1 0 0
0 cos θ0 sin θ0

0 − sin θ0 cos θ0

⎤
⎦ (2)

[θ0(t3) is the angle of rotation of the basis e0
J(t3) about the vector i1].

By definition, the relations dx2/dt3 = − sin θ0 and dx3/dt3 = cos θ0 are valid, and the vector y = x + tie
0
i

(i = 1, 2) defines the coordinates of an arbitrary point of the rod.
We consider the plane strain of the rod such that, during deformation, the reference line remains plane and

is determined by the position vector

a = a2i2 + a3i3, a2 = a2(t3), a3 = a3(t3) ∀t3 ∈ [0, l] (3)

(a2 and a3 are the unknown coordinates of the point t3).
Using the orthogonal transformation

eJ = iJ · O = e0
J · Ō0 · O (4)

with the rotator tensor O(t3), we introduce a local orthonormal basis eJ(t3) rotating during deformation (Ō0 is
the tensor conjugate to O0). In the bases iJ and eJ , the components of the rotator O are determined by a matrix
of the form of (2):

OJK =

⎡
⎣

1 0 0
0 cos θ sin θ

0 − sin θ cos θ

⎤
⎦ . (5)

Here θ = θ0 + ϑ is the angle of rotation of the basis eJ about i1 and ϑ(t3) is the increment in the rotation angle
owing to deformation. In the initial state, ϑ ≡ 0, and the basis eJ coincides with e0

J . The local rotation given by
matrix (5) has only one degree of freedom: angle of rotation θ or ϑ = θ − θ0.

In a deformed state, the location of an arbitrary point of the rod is determined by the vector [4]

g = a + tiei (i = 1, 2). (6)

This basic kinematic approximation specifies the motion of each cross section as a rigid body with two translational
degrees of freedom a2(t3) and a3(t3) and one rotational degree of freedom θ(t3). Function (6) corresponds to the
linear dependence of the three-dimensional displacement field on the transverse coordinates

w ≡ g − y = u + ti(ei − e0
i ), u ≡ a − x. (7)

The volume strain vectors wJ = g,J − y,J · O (see [4]) are calculated by means of Eq. (6):

w3 = u3 + t2 v3, wi = 0. (8)

Here the following contour vectors of the metric and bending strains are introduced:

u3 ≡ a,3 − e3, v3 ≡ e2,3 − e0
2,3 · O. (9)

To formulate scalar kinematic equations, we use the following expansions, which agree with Eqs. (4) and (5):

e1 = i1, e2 = i2 cos θ + i3 sin θ, e3 = −i2 sin θ + i3 cos θ. (10)

We understand formula (9) determining the metric-strain vector as an equation for the unknown position vector a.
Substituting u3 written as u3 = u32e2 +u33e3 into (9), and combining (3) and (10), we obtain the scalar equations

a2,3 = u32 cos θ − (1 + u33) sin θ, a3,3 = u32 sin θ + (1 + u33) cos θ. (11)
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Taking into account Eqs. (9) and (10), we infer that the bending-strain vector v3 has only one component:

v33 = v3 · e3 = θ,3 − θ0,3, v32 = v3 · e2 = 0. (12)

The stress state of the rod, induced by the action of strain, is measured by the stress vector s3 = S32e2+S33e3,
which acts on the unit area of the undeformed cross section. Here S32 is the transverse shear stress and S33 is the
compressive or tensile normal stress.

The resulting stress vectors are given by the inequalities

t3 =
∫

A

s3J dA, m3 =
∫

A

s3Jt2 dA. (13)

For the smooth force fields t3(t3) and m3(t3), the following dynamic equations are satisfied at the reference line [4]:

t3,3 + p = 0, (e2 × m3),3 + a,3 × t3 + q = 0. (14)

Here p(t3) and q(t3) are the vectors of external forces and moments distributed along the rod.
In Eqs. (14), we write t3, m3, and a,3 as

t3 = T32 e2 + T33 e3 = T2 i2 + T3 i3, m3 = M32 e2 + M33 e3, a,3 = u32 e2 + (1 + u33)e3

and obtain the dynamic equations in a scalar form

T2,3 + P2 = 0, T3,3 + P3 = 0, M33,3 + u32T33 − (1 + u33)T32 + Q1 = 0,

T32 = T2 cos θ + T3 sin θ, T33 = −T2 sin θ + T3 cos θ.
(15)

Here T32, T33, M32, and M33 are the components of the internal forces and moments in the rotated coordinate system,
T2 and T3 are the Cartesian components of the force vector, and P2, P3, and Q1 are the Cartesian components of
the external forces and moments.

Equations (11), (12), and (15) constitute a system of nonlinear kinematic and dynamic equations of the
deformed rod.

Constitutive Relations. To find the stress–strain relation in the interval of the direct phase transformation,
we use the system of micromechanical constitutive relations [1]

w32 = ϕ32 + S32/G, w33 = ϕ33 + S33/E,

dϕ32 = (κ0ϕ32 + S32/σ0) dq, dϕ33 = (κ0ϕ33 + (2/3)S33/σ0) dq, (16)

q = sin
(π

2
T+ − T

T+ − T−

)
, T− � T � T+, 0 � q � 1.

Here E and G are the tensile–compressive and shear elastic moduli, respectively, κ0 and σ0 are the experimental
constants of the alloy in the direct phase transformation interval, ϕ32(t3) and ϕ33(t3) are the phase strains, q is the
internal parameter of state determined as the volume fraction of the martensite phase, T+ and T− are the initial
and final temperatures of the direct transformation, respectively, and T is the current temperature. In the relations
given above, the thermal strain of the alloy and the volume effect of phase transformation are ignored; therefore,
ϕ32 and ϕ33 are, in essence, the components of the phase-strain deviator. In addition, we assume that the phase
transformation is an isothermal process with a uniform temperature distribution over the specimen volume, which
implies that the parameter q is independent of coordinates.

It follows from Eq. (16) that the phase strains are determined by differential (with respect to the parameter q)
equations. The first terms in their right sides are responsible for the development of martensite crystals and the
second terms take into account the nucleation and orientation of the crystals in the direction of acting stresses.
The elastic moduli in (16) vary in the phase-transformation interval from their austenite values to their martensite
values. Bearing in mind the meaning of the parameter q, we represent these moduli in the phase-transformation
interval as the Voigt-averaged relations [2]

E = qE− + (1 − q)E+, G = qG− + (1 − q)G+,

where the subscripts minus and plus refer to the martensite and austenite phases, respectively.
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Assuming that the stresses depend on the parameter q much weaker than the phase strains, we obtain an
approximate solution of the differential equations (16):

ϕ32 � S32

σ0κ0
(exp (κ0 q) − 1), ϕ33 � 2

3
S33

σ0κ0
(exp (κ0q) − 1). (17)

This solution satisfies the physical conditions: the phase strains vanish in austenite (for q = 0) and reach a maximum
value in martensite (for q = 1).

Substituting functions (17) into the first and second equations of system (16), we obtain the approximate
constitutive relations

w32 � γ2S32/E0, w33 � γ3S33/E0,

γ2(q) ≡ E0

G
+

E0

σ0κ0
(exp (κ0q) − 1), γ3(q) ≡ E0

E
+

2
3

E0

σ0κ0
(exp (κ0q) − 1).

(18)

Here E0 is a constant with the dimension of stress, which is conveniently identified with E− or E+.
Equations (18) represent the phase transformation as thermoelastic strain with an implicit dependence on

temperature (through the parameter q).
According to Eqs. (8) and (12), we obtain w32 = u32 and w33 = u33 + t2v33 = u33 + t2(θ−θ0),3. Substituting

these expressions into (18) and integrating over the cross section of the rod, with allowance for (13), we obtain the
resulting constitutive relations

u32 � γ2T32/(AE0), u33 � γ3T33/(AE0), θ,3 − θ0,3 � γ3M33/(IE0), (19)

where A is the cross-sectional area and I is the cross-sectional moment of inertia about the vector e0
1.

Equations (11), (12), (15), and (19) constitute a closed system of six first-order differential equations whose
solution depends on the parameter q. In numerical integration of the system, its solutions are found for discrete
values of the parameter q within the interval 0 � q � 1. The last expression in (16) relates the parameter q to the
temperature of the alloy.

The system formulated above also models the plane strain of plates and panels undergoing thermoelastic
phase transformations.

Dimensionless Formulation of the System of Equations. We introduce an independent argument
t = t3/l, a geometrical parameter ε2 = I/(Al2), external-force parameters p2 = P2l

3/(IE0), p3 = P3l
3/(IE0), and

q1 = Q1l
2/(IE0), and unknown functions

y0 = θ, y1 = M33l/(IE0), y2 = a2/l, y3 = a3/l, y4 = T2l
2/(IE0), y5 = T3l

2/(IE0).

Now system (11), (12), (15), (19) can be written in dimensionless form

y′
0 = γ3y1 + θ′0, y′

1 = f2 + (γ3 − γ2)ε2f2f3, y′
2 = − sin y0 + ε2(γ2f2 cos y0 − γ3f3 sin y0),

y′
3 = cos y0 + ε2(γ2f2 sin y0 + γ3f3 cos y0), y′

4 = −p2, y′
5 = −p3, (20)

f2 ≡ y4 cos y0 + y5 sin y0, f3 ≡ −y4 sin y0 + y5 cos y0.

Here γ2 and γ3 are the parameters of state of the alloy [see (18)]; the prime denotes differentiation with respect
to t. The boundary conditions for system (20) are formulated in particular problems.

The solutions of the boundary-value problems given below were obtained for rods and plates made of a
titanium nickelide alloy with the following experimental values of the parameters of the thermoelastic martensite
transformation [2]: T− = 25◦C, T+ = 50◦C, E− = 28 GPa, E+ = 84 GPa, E0 = E+, σ0 = 0.049E+, κ0 = 0.718,
ν− = 0.48, and ν+ = 0.33 (ν− and ν+ are Poisson’s ratios for the martensite and austenite phases, respectively).

Bending of a Straight Rod and a Plate by an End Moment. In the coordinate system chosen in the
present paper, a straight rod should be oriented along the x3 coordinate and a plate should be aligned in the (x3, x1)
plane so that θ0 = 0. Let l be the length of the rod or plate in the x3 direction. For plane bending of a cantilevered
rod (plate) by an end moment M , there are no external distributed loads (P2 = P3 = Q1 = 0), and system (20)
becomes

y′
0 = γ3y1, y′

1 = 0, y′
2 = − sin y0, y′

3 = cos y0, y′
4 = 0, y′

5 = 0 ∀t ∈ (0, 1). (21)
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Fig. 1. Evolution of the bent shapes of the rod (plate) for q = 0 (1),
0.2 (2), 0.4 (3), 0.7 (4), and 1.0 (5).

The conditions of the clamped end x3 = 0 and the constraint-free end x3 = l are given by

y0(0) = 0, y2(0) = 0, y3(0) = 0, y1(1) = −µ, y4(1) = 0, y5(1) = 0, (22)

where µ = Ml/(IE0) is the numerical parameter of the specified end moment; the bracketed values are the boundary
values of the argument t.

The boundary-value problem (21), (22) has the exact solution

y5 = y4 = 0, y1 = −µ, y0 = θ = −µγ3t, y2 =
1 − cos (µγ3t)

µγ3
, y3 =

sin (µγ3t)
µγ3

,

which shows that the bent rod (plate) is a circular arc of radius l/(µγ3) centered at the point x2 = l/(µγ3), x3 = 0;
the internal bending moment M33 = −M = −µE0I/l being constant along the arc. The arc becomes a circumference
provided that µ = 2π/γ3. This value of µ depends on q and other internal parameters of the material. It reaches a
minimum value with respect to q for q = 1: µ− = 2π/γ3(1) � 0.274.

Figure 1 shows the evolution of the bent shapes of the rod (plate) for different values of q and µ = 0.274.
The rod is bent into a ring and the plate is bent into a tube of radius l/(2π) at the end of the phase transformation
(q = 1). The corresponding bending moment is calculated by the formula M = 0.274E+I/l, where I is the cross-
sectional moment of inertia of the rod or a plate. To obtain a ring or a tube outside the phase-transformation
interval, it is necessary to apply the moment M = 2πE+I/l for the austenite phase and moment M = 2πE−I/l for
the martensite phase.

Buckling of a Rod and a Plate under Axial Compression. We consider a two-hinged straight rod
constrained against displacements at t = 0 and loaded in the austenite phase by a compressive force T3 = −P

applied to the end t = 1. As in the previous case, there are no distributed external loads (P2 = P3 = Q1 = 0) and
θ0 = 0. System (20) is subjected to the following boundary conditions different from (22):

y1(0) = 0, y2(0) = 0, y3(0) = 0, y1(1) = 0, y4(1) = 0, y5(1) = −p. (23)

Here p = Pl3/(IE0) is a numerical parameter of the end force.
The nonlinear boundary-value problem (20), (23) was analyzed numerically by the shooting method using

the Mathcad software [5]. Branching of the solutions of the boundary-value problem was studied by varying the
loading parameter p and the phase parameter q.

Figure 2 shows the branching of dependences of the parameters of state u and w on the loading parameter
outside the phase-transformation interval for a rod with the geometrical parameter ε = 0.02 (u and w are the axial
displacement of the free end and the maximum deflection, which are normalized to the rod length and expressed
in percent). If the load is lower than the Euler critical load and the phase strains vanish, the rod remains straight
(w = 0) in the deformed state. The branching is shown in the neighborhood of the Euler critical load p � 9.8.
For p < 9.8, the rod has only rectilinear shapes of equilibrium: w = 0, and the values of the parameter u are
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Fig. 2. Parameters of state u and w versus the loading parameter p outside the phase-transformation
interval.

Fig. 3. Dependence w(q) in the phase-transformation interval for the loading parameter p = 1.0 (1),
0.6 (2), and 0.5 (3).
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Fig. 4. Strain distribution along the rod for different values of the parameter q (see Table 1): the
solid curves refer to the total strains in the most compressed fiber of the rod, and the dashed curves
refer to the bending strains.

Fig. 5. Curvilinear shapes of the rod for different values of the parameter q (see Table 1).

so small that, in the scale of Fig. 2, the corresponding line cannot be distinguished from the abscissa axis. In
the neighborhood of the critical point, intense buckling of the rod occurs, and both parameters of state increase
abruptly. The results shown in Fig. 2 correspond to the austenite and martensite phases of the rod. To calculate
the physical force parameters in this case, one should take E0 = E+ for the austenite phase and E0 = E− for the
martensite phase.

The results of the analysis of the branching pattern in the phase-transformation interval are plotted in Fig. 3.
The branches of the buckled states are shown for the loading parameter p = 1.0, 0.6, and 0.5 and different values
of the phase parameter q. The buckling occurs at the point q � 0.507 for p = 1.0, at q � 0.784 for p = 0.6, and
at q � 0.899 for p = 0.5. In the neighborhood of the critical points, the deflections increase abruptly. The minimum
value of the loading parameter for which the rod buckles due to the phase transformation is p � 0.43.

For p = 0.6, more detailed data on the phase-strain evolution in the rod are listed in Table 1 and plotted in
Figs. 4 and 5. Table 1 contains the values of the parameters u and w, the angles of rotation at the boundary point,
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TABLE 1

Curve number

in Figs. 4 and 5
q u, % w, % θ(1) |u32|, % |u33|, % |v33|, % |w33|, %

1 0.790 2.4635 9.0904 0.2873 0.1881 0.3979 3.1322 3.5301

2 0.811 9.0354 18.1850 0.5912 0.3828 0.4116 6.4819 6.8935

3 0.865 24.3790 28.7220 1.0017 0.6312 0.4482 11.1490 11.5970

4 1.000 55.1510 38.1960 1.5713 0.9296 0.5497 18.1820 18.7320

and the maximum values of the shear strains |u32| and |u33|, bending strains |v33|, and total strains |w33| for different
values of the parameter q. The data of Table 1 show that the shear, bending, and total strains increase much faster
than the compressive strain u33; the transverse shear strain u32 reaches a maximum value at the boundary points,
whereas the bending and total strains reach their maximum values in the middle cross section of the rod.

Figure 4 shows the strain distribution (in percent) along the rod for the corresponding values of q from
Table 1. The curves that refer to the bending strain are shown above the abscissa axis, and the curves that
refer to the total strain in the most compressed fiber of the rod are shown below the abscissa axis. An almost
symmetrical location of the upper and lower curves about the abscissa axis shows that the shear strains are small
compared to the bending strains (this conclusion follows also from the data of Table 1). In the alloy considered,
the thermoelastic strains can be as high as 15%; therefore, the rod can undergo plastic strains or fail within the
interval 0.865 < q < 1.000.

Figure 5 shows the buckled shapes of the rod for the corresponding values of the parameter q from Table 1.
In the unloaded austenite state, the rod corresponds to a unit interval on the abscissa axis.

Conclusions. A theoretical analysis of the results obtained shows that the phase transformation can have a
considerable effect on the critical load in a wide range of external-load values. This fact can be used to find optimal
technological solutions. Undoubtedly, the theoretical findings should be supported experimentally. Theoretical and
experimental data may diverge for the following two most probable reasons. First, the physical properties of any
alloy vary within a rather wide range. The second possible reason is the inadequacy of the mathematical model of
the phase transformation. If the mathematical model is adequate, a theoretical analysis can be used to refine the
physical constants of a real alloy. Otherwise, experimental data can be used to construct a more exact model of the
phase transformation.

This work was supported by the Russian Foundation for Basic Research (Grant No. 04-01-00267).
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